Add like
Add dislike
Add to saved papers

Dialdehyde xanthan gum and curcumin synergistically crosslinked bioprosthetic valve leaflets with anti-thrombotic, anti-inflammatory and anti-calcification properties.

Currently commercial glutaraldehyde (GA)-crosslinked bioprosthetic valve leaflets (BVLs) suffer from thromboembolic complications, calcification, and limited durability, which are the major stumbling block to wider clinical application of BVLs. Thus, developing new-style BVLs will be an urgent need to enhance the durability of BVLs and alleviate thromboembolic complications. In this study, a quick and effective collaborative strategy of the double crosslinking agents (oxidized polysaccharide and natural active crosslinking agent) was reported to realize enhanced mechanical, and structural stability, excellent hemocompatibility and anti-calcification properties of BVLs. Dialdehyde xanthan gum (AXG) exhibiting excellent stability to heat, acid-base, salt, and enzymatic hydrolysis was first introduced to crosslink decellularized porcine pericardium (D-PP) and then curcumin with good properties of anti-inflammatory, anti-coagulation, anti-liver fibrosis, and anti-atherosclerosis was used to synergistically crosslink and multi-functionalize D-PP to obtain AXG + Cur-PP. A comprehensive evaluation of structural characterization, hemocompatibility, endothelialization potential, mechanical properties and component stability showed that AXG + Cur-PP exhibited better anti-thrombotic properties and endothelialization potential, milder immune responses, excellent anti-calcification properties and enhanced mechanical properties compared with GA-crosslinked PP. Overall, this cooperative crosslinking strategy provides a novel solution to achieve BVLs with enhanced mechanical properties and excellent anti-coagulation, anti-inflammatory, anti-calcification, and the ability to promote endothelial cell proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app