Add like
Add dislike
Add to saved papers

Long-term glucocorticoid exposure persistently impairs CD4+ T cell biology by epigenetically modulating the mTORC1 pathway.

Conventional glucocorticoid (GC) treatment has a long-term influence on T-cell immunity, resulting in an increased risk of opportunistic infection after drug withdrawal. The underlying mechanisms remain ambiguous. This study demonstrated that long-term GC treatment induced persistent lymphopenia in patients with primary glomerular disease. GCs continuously suppressed the proportion of CD4+ T cells even after the daily dose was tapered down to the physiologic equivalences, leading to a significant decline of the CD4/CD8 ratio. Meanwhile, GCs impaired CD4+ T cell biology, leading to enhanced apoptotic cell death, reduced proliferative capacity, downregulated pro-inflammatory genes, and upregulated immunoregulatory genes. Specifically, GCs altered FOXP3 expression pattern in CD4+ T cells and favored their acquisition of an active T regulatory (Treg) cell phenotype with enhanced IL-10 production upon stimulation. Mechanistically, GCs tampered with the transcriptional regulation of mechanistic target of rapamycin complex 1 (mTORC1) pathway, resulting in an inhibitory impact on the signaling activity. Targeting mTORC1 signaling by siRNAs could sufficiently modify the viability of GC-exposed CD4+ T cells. By high-throughput sequencing of genome-wide DNA methylation and mRNA, we further uncovered a causal relationship between the altered DNA methylation level and transcription activity in a subset of mTORC1 pathway genes in long-term GC exposure. Taken together, this study reveals a novel regulation of mTORC1 signaling, which might dominate the long-term influence of GC on CD4+ T cell biology in a dose-independent manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app