Add like
Add dislike
Add to saved papers

Smart anti-vascular nanoagent induces positive feedback loop for self-augmented tumor accumulation.

How to achieve efficient drug accumulation in the tumor with low vascular density is a great challenge but the key to push the limit of anti-vascular therapeutic efficacy. Herein, we report a charge-reversible nanoparticles of gambogenic acid (CRNP-GNA) that would induce the positive feedback loop between increased tumor vascular permeability and improved drug accumulation. This positive feedback loop would remarkably improve tumor vascular permeability for efficient drug accumulation through few residue vessels. As compared to its charge-irreversible analogue in the latter injections, the accumulation in tumor and vascular permeability and retention indexes (VPRI) in CRNP-GNA group respectively boosted from nearly equal to 8.32 and 60 times, while its tumorous microvessel density decreased from nearly equal to only 7%. The self-augmented accumulation consequently amplified the antitumor efficacy via multiple pathways of anti-angiogenesis, vascular disruption and pro-apoptosis, where 5 out of 6 tumors in animal models were completely cured by CRNP-GNA. This work confirms that the underlying positive feedback loop for anti-vascular therapy could be induced by charge-reversible drug delivery nanosystem to achieve efficient and self-augmented drug accumulation even in the tumor with few vessels. It provides a novel strategy to conquer the dilemma between anti-vascular efficacy and drug accumulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app