Add like
Add dislike
Add to saved papers

Hydrogen sulfide alleviates mitochondrial damage and ferroptosis by regulating OPA3-NFS1 axis in doxorubicin-induced cardiotoxicity.

Cellular Signalling 2023 March 15
Ferroptosis is a major cause of cardiotoxicity induced by doxorubicin (DOX). Previous studies have shown that hydrogen sulfide (H2 S) inhibits ferroptosis in cardiomyocytes and myoblasts, but the underlying mechanism has not been fully elucidated. In this study, we investigated the role of H2 S in protecting against DOX-induced cardiotoxicity both in vivo and in vitro, and elucidated the potential mechanisms involved. We found that DOX downregulated the expression of glutathione peroxidase 4 (GPX4) and NFS1, and upregulated the expression of acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) expression level, resulting in increased lipid peroxidation and ferroptosis. Additionally, DOX inhibited MFN2 expression and increased DRP1 and FIS1 expression, leading to abnormal mitochondrial structure and function. In contrast, exogenous H2 S inhibited DOX-induced ferroptosis by restoring GPX4 and NFS1 expression, and reducing lipid peroxidation in H9C2 cells. This effect was similar to that of the ferroptosis antagonist ferrostatin-1 (Fer-1) in protecting against DOX-induced cardiotoxicity. We further demonstrated that the protective effect of H2 S was mediated by the key mitochondrial membrane protein optic atrophy 3 (OPA3), which was downregulated by DOX and restored by exogenous H2 S. Overexpression of OPA3 alleviated DOX-induced mitochondrial dysfunction and ferroptosis both in vivo and in vitro. Mechanistically, NFS1 has an inhibitory effect on ferroptosis, and NFS1 deficiency increases the susceptibility of cardiomyocytes to ferroptosis. OPA3 is involved in the regulation of ferroptosis by interacting with NFS1. Post-translationally, DOX promoted OPA3 ubiquitination, while exogenous H2 S antagonized OPA3 ubiquitination by promoting OPA3 s-sulfhydration. In summary, our findings suggested that H2 S protects against DOX-induced cardiotoxicity by inhibiting ferroptosis via targeting the OPA3-NFS1 axis. This provides a potential therapeutic strategy for the treatment of DOX-induced cardiotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app