Add like
Add dislike
Add to saved papers

High-frequency vibration effects on material removal mechanisms in ultrasonic transverse scratching of carbon fiber reinforced plastics.

Ultrasonics 2023 March 6
This paper represented some fundamental investigations on the potential effects of the high-frequency vibration on material removal mechanisms in ultrasonic transverse scratching of carbon fiber reinforced plastics (CFRPs). It was found that the ultrasonic superimposition brought about the evident reduction of the ductile-brittle transition depth of the unidirectional CFRPs. For the scratched groove generated without ultrasonic, the tensile stress and compressive stress caused by the indenter penetration were respectively responsible for the formations of the radial cracks at the leading edges and the central region. Under the combination of the inertia effects induced by the ultrasonic superposition and the skin-core structure of the carbon fibers, the micro-defects situated at the interior of the fibers were nucleated simultaneously, and their propagations caused the formations of the oblique cracks. Incorporated with the strain rate effects of the materials, a fresh theoretical model was proposed to describe the evolution of the mechanical stress during the scratching process. The fiber fragments induced by the oblique cracks were just concentrated on the top surface of the scratched groove, due to the coupling effects of the small penetration depth of the indenter and the express reduction of strain rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app