Add like
Add dislike
Add to saved papers

Circulating SARS-CoV-2+ Megakaryocytes Associate with Severe Viral Infection in COVID-19.

Blood Advances 2023 March 16
Several independent lines of evidence suggest that megakaryocytes are dysfunctional in severe COVID-19. Herein, we characterized peripheral circulating megakaryocytes in a large cohort of COVID-19 inpatients and correlated subpopulation frequencies with clinical outcomes. Using peripheral blood, we show that megakaryocytes are increased in the systemic circulation in COVID-19, and we identify and validate S100A8/A9 as a defining marker of megakaryocyte dysfunction. We further reveal a subpopulation of S100A8/A9+ megakaryocytes that contain SARS-CoV-2 protein and RNA. Using flow cytometry of peripheral blood and in vitro studies on SARS-CoV-2 infected primary human megakaryocytes, we demonstrate that megakaryocytes can transfer viral antigens to emerging platelets. Mechanistically, we show that SARS-CoV-2 containing megakaryocytes are NFκB-activated, via p65 and p52, express NFκB-mediated cytokines, IL-6 and IL-1β, and display high surface expression of TLR2 and TLR4, canonical drivers of NFκB. In a cohort of 218 COVID-19 inpatients, we correlate frequencies of megakaryocyte subpopulations with clinical outcomes and show that SARS-CoV-2 containing megakaryocytes are a strong risk factor for mortality and multi-organ injury, including respiratory failure, mechanical ventilation, acute kidney injury, thrombotic events, and ICU admission. Further, we show that SARS-CoV-2+ megakaryocytes are present in lung and brain autopsy tissues from deceased COVID-19 donors. This study offers the first evidence implicating SARS-CoV-2+ peripheral megakaryocytes in severe disease and suggests that circulating megakaryocytes warrant investigation in inflammatory disorders beyond COVID-19.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app