Add like
Add dislike
Add to saved papers

Lung-to-heart ratio analysis using virtual planar images obtained from myocardial perfusion SPECT data: A phantom and clinical studies.

BACKGROUNDS: The lung-to-heart ratio (L/H ratio) in myocardial perfusion scintigraphy (MPS) is a useful marker that complements the sensitivity of ischemia detection. However, it requires planar imaging acquired following a separate protocol in addition to single-photon emission computed tomography (SPECT). We developed a novel method for constructing virtual planar image (VPI) from SPECT data.

METHODS: Myocardial phantoms using Tl-201 were built with different amounts of radioactivity in the lungs. SPECT data and conventional planar images of these phantoms were collected with an Anger-type gamma camera. VPIs were constructed by adding all coronal images reconstructed from SPECT data. The clinical utility of VPIs obtained from 52 patients who underwent MPS with Tc-99m sestamibi was evaluated.

RESULTS: The radioactivity linearity of VPIs was satisfactory, with a correlation coefficient of r ≥ .99 between the measured amounts of radioactivity and image counts. The L/H ratios obtained from VPI analysis were strongly correlated with those of conventional planar images with a correlation coefficient of r ≥ .99 in the phantom study and r = .929 in clinical application.

CONCLUSION: The accuracy of VPI-based L/H ratio analysis was comparable to that of conventional planar image-based analysis. VPIs could be used as an alternative method of obtaining planar images in clinical settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app