JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Exosomes Derived From Kartogenin-Preconditioned Mesenchymal Stem Cells Promote Cartilage Formation and Collagen Maturation for Enthesis Regeneration in a Rat Model of Chronic Rotator Cuff Tear.

BACKGROUND: Poor tendon-to-bone healing in chronic rotator cuff tears (RCTs) is related to unsatisfactory outcomes. Exosomes derived from mesenchymal stem cells reportedly enhance rotator cuff healing. However, the difficulty in producing exosomes with a stronger effect on enthesis regeneration must be resolved.

PURPOSE: To study the effect of exosomes derived from kartogenin (KGN)-preconditioned human bone marrow mesenchymal stem cells (KGN-Exos) on tendon-to-bone healing in a rat model of chronic RCT.

STUDY DESIGN: Controlled laboratory study.

METHODS: Exosome-loaded sodium alginate hydrogel (SAH) was prepared. Moreover, exosomes were labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) or 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (Dil) for in vivo tracking. Bilateral rotator cuff repair (RCR) was conducted in an established chronic RCT rat model. A total of 66 rats were randomized to control, untreated exosome (un-Exos), and KGN-Exos groups to receive local injections of pure SAH, un-Exos, or KGN-Exos SAH at the repaired site. The presence of DiR/Dil-labeled exosomes was assessed at 1 day and 1 week, and tendon-to-bone healing was evaluated histologically, immunohistochemically, and biomechanically at 4 and 8 weeks.

RESULTS: Both un-Exos and KGN-Exos exhibited sustained release from SAH for up to 96 hours. In vivo study revealed that un-Exos and KGN-Exos were localized to the repaired site at 1 week. Moreover, the KGN-Exos group showed a higher histological score and increased glycosaminoglycan and collagen II expression at 4 and 8 weeks. In addition, more mature and better-organized collagen fibers with higher ratios of collagen I to collagen III were observed at 8 weeks in the tendon-to-bone interface compared with those in the control and un-Exos groups. Biomechanically, the KGN-Exos group had the highest failure load (28.12 ± 2.40 N) and stiffness (28.57 ± 2.49 N/mm) among the 3 groups at 8 weeks.

CONCLUSION: Local injection of SAH with sustained KGN-Exos release could effectively promote cartilage formation as well as collagen maturation and organization for enthesis regeneration, contributing to enhanced biomechanical properties after RCR.

CLINICAL RELEVANCE: KGN-Exos injection may be used as a cell-free therapeutic option to accelerate tendon-to-bone healing in chronic RCT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app