Add like
Add dislike
Add to saved papers

An Experimental Study: Treatment of Subcutaneous C6 Glioma in Rats Using Acoustic Droplet Vaporization.

OBJECTIVE: The objective of this study was to investigate the treatment effects of acoustic droplet vaporization (ADV) on tumors.

METHODS: Experiments were conducted on subcutaneous C6 glioma implanted in 37 rats. Twenty-five rats were divided into five groups treated by ultrasound (US) + dodecafluoropentane (DDFP), US + microbubble (MB), US, DDFP, or saline, respectively. ADV was performed using DDFP droplets (2-5 μm) triggered by non-focused pulsed ultrasound. Macroscopic and histological changes of the tumor were compared with investigation of the tumor ablation effect of ADV. Tumor temperature was measured before and immediately after treatment to explore temperature changes. Furthermore, another 12 rats with bilateral tumors were divided into two groups. Six animals received ADV treatment on unilateral tumor, while another six received saline injection on unilateral tumor. The tumor blood perfusion, tumor volume and related immune response were measured.

RESULTS: The tumors treated by ADV were partially damaged without significant temperature rise. For the animals with bilateral tumors, the tumor blood perfusion around the damaged area on the side receiving ADV still existed. Additionally, the bilateral tumors of animals treated with ADV were smaller than those of animals treated with saline, along with stronger immune response and more tumor cell apoptosis in tumors on both sides.

CONCLUSION: The study demonstrated that ADV treatment could damage subcutaneous glioma in rats by mechanical effect and enhance systemic immune response to furtherly inhibit the tumor growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app