Add like
Add dislike
Add to saved papers

Vacuoles related to tissue neuron-astrocyte ratio and infiltration of macrophages/monocytes contribute to hyperintense brain signals on diffusion-weighted magnetic resonance imaging in sporadic Creutzfeldt-Jakob disease.

BACKGROUND: Radiological features in patients with sporadic Creutzfeldt-Jakob disease (sCJD) are hyperintensity of the cerebral cortex and the basal ganglia displayed by diffusion-weighted magnetic resonance imaging (DW-MRI). We performed a quantitative study on neuropathological and radiological findings.

METHODS: Patient 1 received a definite diagnosis of MM1-type sCJD, while patient 2 received a definite diagnosis of MM1 + 2-type sCJD. Two DW-MRI scans were performed on each patient. DW-MRI was either taken the day before or on the day of the patient's death, and several hyperintense or isointense areas were marked as a region of interest (ROI). Mean signal intensity of the ROI was measured. Pathological quantitative assessments of the vacuoles, astrocytosis, infiltration of monocytes/macrophages, and proliferation of microglia was performed. Vacuole load (% area vacuole), glial fibrillary acidic protein (GFAP), CD68, and Iba-1 load were calculated. We defined spongiform change index (SCI) to indicate vacuoles related to a tissue neuron-astrocyte ratio. We assessed the correlation of intensity of the last DW-MRI and the pathological findings as well as association of changes of the signal intensity on the sequential images and the pathological findings.

RESULT: We observed a strong positive correlation between SCI and DW-MRI intensity. In the analysis using serial DW-MRI and pathological findings, we found that CD68 load was significantly larger in areas where signal intensity decreased, as compared to those areas where hyperintensity remained unchanged.

CONCLUSION: DW-MRI intensity in sCJD is associated with the ratio of neuron to astrocyte in the vacuoles and the infiltration of macrophages and/or monocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app