Add like
Add dislike
Add to saved papers

Acute bouts of aerobic and resistance exercise similarly alter inhibitory control and response time while inversely modifying plasma BDNF concentrations in middle-aged and older adults with type 2 diabetes.

Impairments in several domains of cognitive functions are observed in people with Type 2 Diabetes Mellitus (T2DM), often accompanied by low Brain-derived neurotrophic factor (BDNF) concentrations. Although aerobic and resistance exercise enhances cognitive functions and raises BDNF concentrations in several populations, it remained uncertain in T2DM subjects. This study compared the effects of a single bout of aerobic (AER, 40 min of treadmill walk at 90-95% of the maximum walk speed) or resistance (RES, 3 × 10 repetitions in eight exercises at 70% of 10-RM) exercise on specific cognitive domain performance and plasma BDNF concentrations of physically active T2DM subjects. Eleven T2DM subjects (9 women/2 men; 63 ± 7 years) performed two counterbalanced trials on non-consecutive days. Stroop Color and Word (SCW) task [assessing the attention (congruent condition) and inhibitory control (incongruent condition)], Visual response time (assessing the response time), and blood collection (for plasma BDNF concentrations) were performed pre and post-exercise sessions. With distinct magnitude, both AER and RES improved the incongruent-SCW (d = - 0.26 vs. - 0.43 in AER and RES, respectively; p < 0.05), RT(best) (d = - 0.31 vs. - 0.52, p < 0.05), and RT(1-5) (d = - 0.64 vs. - 0.21, p < 0.05). The congruent-SCW and RT(6-10) were not statistically different. Plasma BDNF concentrations were elevated 11% in AER (d = 0.30) but decreased by 15% in RES (d = - 0.43). A single session of aerobic or resistance exercise similarly improved the inhibitory control and response time of physically active T2DM subjects. Nevertheless, aerobic and resistance exercise sessions induced an opposite clinical effect in plasma BDNF concentrations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app