Add like
Add dislike
Add to saved papers

Charged multivesicular body protein 2B ameliorates biliary injury in the liver from donation after cardiac death rats via autophagy with air-oxygenated normothermic machine perfusion.

Normothermic machine perfusion (NMP) could provide a curative treatment to reduce biliary injury in donation after cardiac death (DCD) donor livers; however, the underlying mechanisms remain poorly understood. In a rat model, our study compared air-oxygenated NMP to hyperoxygenated NMP and found that air-oxygenated NMP improved DCD functional recovery. Here, we found that the charged multivesicular body protein 2B (CHMP2B) expression was substantially elevated in the intrahepatic biliary duct endothelium of the cold-preserved rat DCD liver after air-oxygenated NMP or in biliary endothelial cells under hypoxia/physoxia. CHMP2B knockout (CHMP2B-/- ) rat livers showed increased biliary injury after air-oxygenated NMP, indicated by decreased bile production and bilirubin level, elevated biliary levels of lactate dehydrogenase and gamma-glutamyl transferase. Mechanically, we demonstrated that CHMP2B was transcriptionally regulated by Kruppel-like transcription factor 6 (KLF6) and alleviated biliary injury through decreasing autophagy. Collectively, our results suggested that air-oxygenated NMP regulates CHMP2B expression through the KLF6, which reduces biliary injury by inhibiting autophagy. Targeting the KLF6-CHMP2B autophagy axis may provide a solution to reducing biliary injury in DCD livers undergoing NMP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app