Add like
Add dislike
Add to saved papers

LncRNA CACClnc promotes chemoresistance of colorectal cancer by modulating alternative splicing of RAD51.

Oncogene 2023 March 12
Long non-coding RNAs (lncRNAs) play important roles in carcinogenesis. However, the effect of lncRNA on chemoresistance and RNA alternative splicing remains largely unknown. In this study, we identified a novel lncRNA, CACClnc, which was upregulated and associated with chemoresistance and poor prognosis in colorectal cancer (CRC). CACClnc promoted CRC resistance to chemotherapy via promoting DNA repair and enhancing homologous recombination in vitro and in vivo. Mechanistically, CACClnc specifically bound to Y-box binding protein 1 (YB1, a splicing factor) and U2AF65 (a subunit of U2AF splicing factor), promoting the interaction between YB1 and U2AF65, and then modulated alternative splicing (AS) of RAD51 mRNA, and consequently altered CRC cell biology. In addition, expression of exosomal CACClnc in peripheral plasma of CRC patients can effectively predict the chemotherapy effect of patients before treatment. Thus, measuring and targeting CACClnc and its associated pathway could yield valuable insight into clinical management and might ameliorate CRC patients' outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app