Add like
Add dislike
Add to saved papers

Chrysin Encapsulated Copper Nanoparticles with Low Dose of Gamma Radiation Elicit Tumor Cell Death Through p38 MAPK/NF-κB Pathways.

Improving radiation effect on tumor cells using radiosensitizers is gaining traction for improving chemoradiotherapy. This study aimed to evaluate copper nanoparticles (CuNPs) synthesized using chrysin as radiosensitizer with γ-radiation on biochemical and histopathological approaches in mice bearing Ehrlich solid tumor. CuNPs were characterized with irregular round sharp shape with size range of 21.19-70.79 nm and plasmon absorption at 273 nm. In vitro study on MCF-7 cells detected cytotoxic effect of CuNPs with IC50 of 57.2 ± 3.1 μg. In vivo study was performed on mice transplanted with Ehrlich solid tumor (EC). Mice were injected with CuNPs (0.67 mg/kg body weight) and/or exposed to low dose of gamma radiation (0.5 Gy). EC mice exposed to combined treatment of CuNPs and radiation showed a marked reduction in tumor volume, ALT and CAT, creatinine, calcium, and GSH, along with elevation in MDA, caspase-3 in parallel with inhibition of NF-κB, p38 MAPK, and cyclin D1 gene expression. Comparing histopathological findings of treatment groups ends that combined treatment was of higher efficacy, showing tumor tissue regression and increase in apoptotic cells. In conclusion, CuNPs with a low dose of gamma radiation showed more powerful ability for tumor suppression via promoting oxidative state, stimulating apoptosis, and inhibiting proliferation pathway through p38MAPK/NF-κB and cyclinD1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app