Add like
Add dislike
Add to saved papers

Acute pancreatitis induces a transient hypercoagulable state in murine models.

BACKGROUND/OBJECTIVES: Although understudied, risk of venous thromboembolism (VTE) appears to be increased during acute pancreatitis (AP). We aimed to further characterize a hypercoagulable state associated with AP utilizing thromboelastography (TEG), a readily available, point of care test.

METHODS: AP was induced in C57/Bl6 mice using l-arginine and caerulein. TEG was performed with citrated native samples. The maximum amplitude (MA) and coagulation index (CI), a composite marker of coagulability, were evaluated. Platelet aggregation was assessed using whole blood collagen-activated platelet impedance aggregometry. Circulating tissue factor (TF), the initiator of extrinsic coagulation, was measured with ELISA. A VTE model using IVC ligation followed by measurement of clot size and weight was evaluated. After IRB approval and consent, blood samples from patients hospitalized with a diagnosis of AP were evaluated by TEG.

RESULTS: Mice with AP displayed a significant increase in MA and CI, consistent with hypercoagulability. Hypercoagulability peaked at 24 h after induction of pancreatitis, then returned to baseline by 72 h. AP resulted in significantly increased platelet aggregation and elevated circulating TF. Increased clot formation with AP was observed in an in vivo model of deep vein thrombosis. In a proof of concept, correlative study, over two thirds of patients with AP demonstrated an elevated MA and CI compared to the normal range, consistent with hypercoagulability.

CONCLUSIONS: Murine acute pancreatitis results in a transient hypercoagulable state that can be assessed by TEG. Correlative evidence for hypercoagulability was also demonstrated in human pancreatitis. Further study to correlate coagulation measures to incidence of VTE in AP is warranted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app