Add like
Add dislike
Add to saved papers

Deep cortical microinfarction induced by femtosecond laser in mice: Long-term secondary pathological changes in corresponding superficial cortex.

BACKGROUND AND PURPOSE: Previous studies have explored the clinical consequences of cortical microinfarction, mainly age-related cognitive decline. However, functional impairment of deep cortical microinfarction remains poorly understood. Based on anatomical knowledge and previous research, we infer that damage to the deep cortex may lead to cognitive deficits and communication impairment between the superficial cortex and thalamus. This study aimed to develop a new model of deep cortical microinfarction based on femtosecond laser ablation of a perforating artery.

METHODS: Twenty-eight mice were anesthetized with isoflurane, and a cranial window was thinned using a microdrill. Intensively focused femtosecond laser pulses were used to produce perforating arteriolar occlusions and ischemic brain damage was examined using histological analysis.

RESULTS: Occlusion of different perforating arteries induced different types of cortical microinfarctions. Blocking the perforating artery, which enters the cerebral cortex vertically and has no branches within 300 μm below, can result in deep cortical microinfarction. Moreover, this model showed neuronal loss and microglial activation in the lesions as well as dysplasia of nerve fibers and β-amyloid deposition in the corresponding superficial cortex.

CONCLUSIONS: We present here a new model of deep cortical microinfarction in mice, in which specific perforating arteries are selectively occluded by a femtosecond laser, and we preliminarily observe several long-term effects related to cognition. This animal model is helpful in investigating the pathophysiology of deep cerebral microinfarction. However, further clinical and experimental studies are required to explore deep cortical microinfarctions in greater molecular and physiological detail.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app