Add like
Add dislike
Add to saved papers

Strategies for accommodating gene-edited sires and their descendants in genetic evaluations.

Gene editing has the potential to expedite the rate of genetic gain for complex traits. However, changing nucleotides (i.e., QTN) in the genome can affect the additive genetic relationship among individuals and, consequently, impact genetic evaluations. Therefore, the objectives of this study were to estimate the impact of including gene-edited individuals in the genetic evaluation and investigate modeling strategies to mitigate potential errors. For that, a beef cattle population was simulated for 9 generations (n=13,100). Gene-edited sires (1, 25, or 50) were introduced in generation 8. The number of edited QTN was 1, 3, or 13. Genetic evaluations were performed using pedigree, genomic data, or a combination of both. Relationships were weighted based on the effect of the edited QTN. Comparisons were made using the accuracy, average absolute bias, and dispersion of the estimated breeding values (EBV). In general, the EBV of the first generation of progeny of gene-edited sires were associated with greater average absolute bias and over-dispersion than the EBV of the progeny of non-gene-edited sires (P ≤ 0.001). Weighting the relationship matrices increased (P ≤ 0.001) the accuracy of EBV when the gene-edited sires were introduced by 3% and decreased (P ≤ 0.001) the average absolute bias and dispersion for the progeny of gene-edited sires. For the second generation of descendants of gene-edited sires, the absolute bias increased as the number of edited alleles increased; however, the rate of increase in absolute bias was 0.007 for each allele edited when the relationship matrices were weighted compared with 0.10 when the relationship matrices were not weighted. Overall, when gene-edited sires are included in genetic evaluations, error is introduced in the EBV, such that the EBV of progeny of gene-edited sires are underestimated. Hence, the progeny of gene-edited sires would be less likely to be selected to be parents of the next generation than what was expected based on their true genetic merit. Therefore, modeling strategies such as weighting the relationship matrices are essential to avoid incorrect selection decisions if animals that have been edited for QTN underlying complex traits are introduced into genetic evaluations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app