Add like
Add dislike
Add to saved papers

Transplantation of Umbilical Cord-Derived Mesenchymal Stem Cells Attenuates Surgical Wound-Induced Blood-Brain Barrier Dysfunction in Mice.

Blood-brain barrier (BBB) is the most important component of central nervous system (CNS) to keep toxins and pathogens from CNS. Although our studies demonstrated that using interleukin-6 antibodies (IL-6-AB) reversed the increased permeability of BBB, IL-6-AB is limited in their application that only could be used a few hours before surgery and seemed delayed the surgical wounds healing process, which urges us to find another more effective method. In this study, we employed the C57BL/6J female mice to investigate the potential effects of umbilical cord-derived mesenchymal stem cells (UC-MSCs) transplantation on BBB dysfunction induced by surgical wound. Compared to IL-6-AB, the transplantation of UC-MSCs more effectively decreased the BBB permeability after surgical wound evaluated by dextran tracer (immunofluorescence imaging and luorescence quantification). In addition, UC-MSCs can largely decrease the ratio of proinflammatory cytokine IL-6 to the anti-inflammatory cytokine IL-10 in both serum and brain tissue after surgical wound. Moreover, UC-MSCs successfully increased the levels of tight junction proteins (TJs) in BBB such as ZO-1, Occludin, and Claudin-5 and extremely decreased the level of matrix metalloproteinase-9 (MMP-9). Interestingly, UC-MSCs treatment also had positive effects on wound healing while protecting the BBB dysfunction induced by surgical wound compared to IL-6-AB treatment. These findings suggest that UC-MSCs transplantation is a highly efficient and promising approach on protecting the integrity of BBB which caused by peripheral traumatic injuries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app