Add like
Add dislike
Add to saved papers

Trimethylamine-N-Oxide Promotes High-Glucose-Induced Dysfunction and NLRP3 Inflammasome Activation in Retinal Microvascular Endothelial Cells.

INTRODUCTION: Along with blood glucose levels, diabetic retinopathy (DR) development also involves endogenous risk factors, such as trimethylamine-N-oxide (TMAO), a product of intestinal flora metabolic disorder, which exacerbates diabetic microvascular complications. However, the effect of TMAO on retinal cells under high-glucose conditions remains unclear. Therefore, this study examined the effects of TMAO on high-glucose-induced retinal dysfunction in the context of NLRP3 inflammasome activation, which is involved in DR.

MATERIALS AND METHODS: TMAO was assessed in the serum and aqueous humor of patients using ELISA. Human retinal microvascular endothelial cells (HRMECs) were treated for 72 h as follows: NG (normal glucose, D-glucose 5.5 mM), NG + TMAO (5  μ M), HG (high glucose, D-glucose 30 mM), and HG + TMAO (5  μ M). The CCK8 assay was then used to assess cell proliferation; wound healing, cell migration, and tube formation assays were used to verify changes in cell phenotype. ZO-1 expression was determined using immunofluorescence and western blotting. Reactive oxygen species (ROS) formation was assessed using DCFH-DA. NLRP3 inflammasome complex activation was determined using a western blot.

RESULTS: The serum and aqueous humor from patients with PDR contained higher levels of TMAO compared to patients with nontype 2 diabetes (Control), non-DR (NDR), and non-PDR (NPDR). TMAO showed significant acceleration of high-glucose-induced cell proliferation, wound healing, cell migration, and tube formation. ZO-1 expression decreased remarkably with the combined action of TMAO and a high glucose compared to either treatment alone. TMAO also promoted high-glucose-activated NLRP3 inflammasome complex.

CONCLUSION: The combination of TMAO and high-glucose results in increased levels of ROS and NLRP3 inflammasome complex activation in HRMECs, leading to exacerbated retinal dysfunction and barrier failure. Thus, TMAO can accelerate PDR occurrence and development, thus indicating the need for early fundus monitoring in diabetic patients with intestinal flora disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app