Comparing random effects models, ordinary least squares, or fixed effects with cluster robust standard errors for cross-classified data.
Psychological Methods 2023 March 10
Cross-classified random effects modeling (CCREM) is a common approach for analyzing cross-classified data in psychology, education research, and other fields. However, when the focus of a study is on the regression coefficients at Level 1 rather than on the random effects, ordinary least squares regression with cluster robust variance estimators (OLS-CRVE) or fixed effects regression with CRVE (FE-CRVE) could be appropriate approaches. These alternative methods are potentially advantageous because they rely on weaker assumptions than those required by CCREM. We conducted a Monte Carlo Simulation study to compare the performance of CCREM, OLS-CRVE, and FE-CRVE in models, including conditions where homoscedasticity assumptions and exogeneity assumptions held and conditions where they were violated, as well as conditions with unmodeled random slopes. We found that CCREM out-performed the alternative approaches when its assumptions are all met. However, when homoscedasticity assumptions are violated, OLS-CRVE and FE-CRVE provided similar or better performance than CCREM. When the exogeneity assumption is violated, only FE-CRVE provided adequate performance. Further, OLS-CRVE and FE-CRVE provided more accurate inferences than CCREM in the presence of unmodeled random slopes. Thus, we recommend two-way FE-CRVE as a good alternative to CCREM, particularly if the homoscedasticity or exogeneity assumptions of the CCREM might be in doubt. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app