Add like
Add dislike
Add to saved papers

Histological confinement of transglutaminase-mediated nit sheath crosslinking is essential for proper oviposition and egg coating in the human head louse, Pediculus humanus capitis.

Parasites & Vectors 2023 March 10
BACKGROUND: Head louse females secrete liquid gel, which is mainly composed of the louse nit sheath protein 1 (LNSP1) and LNSP2, when they lay eggs. The gel is crosslinked by transglutaminase (TG) to form the nit sheath, which covers most of the egg except the top operculum area where breathing holes are located. Knowledge on the selective mechanism of nit sheath solidification to avoid uncontrolled crosslinking could lead to designing a novel method of louse control, but no information is available yet.

METHODS: To elucidate the crosslinking mechanisms of nit sheath gel inside the reproductive system of head louse females, in situ hybridization in conjunction with microscopic observation of the oviposition process was conducted.

RESULTS: Histochemical analysis revealed that LNSP1 and LNSP2 are expressed over the entire area of the accessory gland and uterus, whereas TG expression site is confined to a highly localized area around the opening of posterior oviduct. Detailed microscopic observations of oviposition process uncovered that a mature egg is positioned in the uterus after ovulation. Once aligned inside the uterus, the mature egg is redirected so that its operculum side is tightly held by the ventral end of the uterus being positioned toward the head again and its pointed bottom end being positioned toward the dorsal end of the uterus, which functions as a reservoir for the nit sheath gel.

CONCLUSIONS: Physical separation of the TG-mediated crosslinking site from the ventral end of the uterus is necessary to avoid uncontrolled crosslinking inside the uterus and to ensure selective crosslinking over only the lower part of egg without any unwanted crosslinking over the operculum during oviposition.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app