Spectral Effects and Range of Focus in a Multizonal-Refractive Intraocular Lens Compared with a Standard Trifocal Diffractive Design.
Ophthalmology and Therapy 2023 March 9
INTRODUCTION: This study was performed to compare the optical performance of a multizonal presbyopia-correcting intraocular lens (IOL) and a conventional trifocal model.
METHODS: The optical quality and simulated visual acuity (VA) of 570 Precizon Presbyopic NVA (OPHTEC BV) and AcrySof IQ PanOptix (Alcon) were compared. The Precizon features a refractive design consisting of alternating optical zones that converge the incident light into two principal foci and a transitional zone for intermediate vision. By contrast, the PanOptix applies a diffractive (non-apodized) profile to achieve trifocality. Simulated VA was derived from the modulation transfer function. Chromatic aberration effects were also studied.
RESULTS: The diffractive and multizonal-refractive lenses yielded comparable simulated VAs at far focus (0.00 logMAR). All curves showed a reduction in expected VA with an increase in negative defocus. At - 1.0 D, the multizonal-refractive IOL's VA dropped by 0.05 logMAR, but for the diffractive model, it was one line (0.11 logMAR). The multizonal-refractive lens's VA prediction at the secondary peak was 0.03 logMAR-minimally better than the 0.06 logMAR of the diffractive lens at - 2.5 D. The refractive lens exhibited a 24% decrease in polychromatic optical quality due to material dispersion. The performance of PanOptix was more substantially affected, showing a 44% loss at 50 lp/mm at far, with minimal effects at other distances.
CONCLUSION: The multizonal-refractive lens does not fall short of the established trifocal IOL, and it can be used to extend the visual range of pseudophakic patients. Although the multizonal-refractive lens has lower material dispersion, the diffractive model corrects chromatism beyond far focus.
METHODS: The optical quality and simulated visual acuity (VA) of 570 Precizon Presbyopic NVA (OPHTEC BV) and AcrySof IQ PanOptix (Alcon) were compared. The Precizon features a refractive design consisting of alternating optical zones that converge the incident light into two principal foci and a transitional zone for intermediate vision. By contrast, the PanOptix applies a diffractive (non-apodized) profile to achieve trifocality. Simulated VA was derived from the modulation transfer function. Chromatic aberration effects were also studied.
RESULTS: The diffractive and multizonal-refractive lenses yielded comparable simulated VAs at far focus (0.00 logMAR). All curves showed a reduction in expected VA with an increase in negative defocus. At - 1.0 D, the multizonal-refractive IOL's VA dropped by 0.05 logMAR, but for the diffractive model, it was one line (0.11 logMAR). The multizonal-refractive lens's VA prediction at the secondary peak was 0.03 logMAR-minimally better than the 0.06 logMAR of the diffractive lens at - 2.5 D. The refractive lens exhibited a 24% decrease in polychromatic optical quality due to material dispersion. The performance of PanOptix was more substantially affected, showing a 44% loss at 50 lp/mm at far, with minimal effects at other distances.
CONCLUSION: The multizonal-refractive lens does not fall short of the established trifocal IOL, and it can be used to extend the visual range of pseudophakic patients. Although the multizonal-refractive lens has lower material dispersion, the diffractive model corrects chromatism beyond far focus.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app