Add like
Add dislike
Add to saved papers

In vitro data for fire pollutants: contribution of studies using human cell models towards firefighters' occupational.

Firefighters are the principal line of defense against fires, being at elevated risk of exposure to health-relevant pollutants released during fires and burning processes. Although many biomonitoring studies exist, only a limited number of human in vitro investigations in fire risk assessment are currently available. In vitro studies stand out as valuable tools to assess the toxicity mechanisms involved following exposure to fire pollutants at a cellular level. The aim of the present review was to contextualize existing in vitro studies using human cell models exposed to chemicals emitted from fire emissions and wood smoke and discuss the implications of the observed toxic outcomes on adverse health effects detected in firefighters. Most of the reported in vitro investigations focused on monocultures respiratory models and exposure to particulate matter (PM) extracts collected from fire effluents. Overall, (1) a decrease in cellular viability, (2) enhanced oxidative stress, (3) increased pro-inflammatory cytokines levels and (4) elevated cell death frequencies were noted. However, limited information remains regarding the toxicity mechanisms initiated by firefighting activities. Hence, more studies employing advanced in vitro models and exposure systems using human cell lines are urgently needed taking into consideration different routes of exposure and health-related pollutants released from fires. Data are needed to establish and define firefighters' occupational exposure limits and to propose mitigation strategies to promote beneficial human health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app