An artificial intelligence-based model for prediction of atrial fibrillation from single-lead sinus rhythm electrocardiograms facilitating screening.
AIMS: Screening for atrial fibrillation (AF) is recommended in the European Society of Cardiology guidelines. Yields of detection can be low due to the paroxysmal nature of the disease. Prolonged heart rhythm monitoring might be needed to increase yield but can be cumbersome and expensive. The aim of this study was to observe the accuracy of an artificial intelligence (AI)-based network to predict paroxysmal AF from a normal sinus rhythm single-lead ECG.
METHODS AND RESULTS: A convolutional neural network model was trained and evaluated using data from three AF screening studies. A total of 478 963 single-lead ECGs from 14 831 patients aged ≥65 years were included in the analysis. The training set included ECGs from 80% of participants in SAFER and STROKESTOP II. The remaining ECGs from 20% of participants in SAFER and STROKESTOP II together with all participants in STROKESTOP I were included in the test set. The accuracy was estimated using the area under the receiver operating characteristic curve (AUC). From a single timepoint ECG, the artificial intelligence-based algorithm predicted paroxysmal AF in the SAFER study with an AUC of 0.80 [confidence interval (CI) 0.78-0.83], which had a wide age range of 65-90+ years. Performance was lower in the age-homogenous groups in STROKESTOP I and STROKESTOP II (age range: 75-76 years), with AUCs of 0.62 (CI 0.61-0.64) and 0.62 (CI 0.58-0.65), respectively.
CONCLUSION: An artificial intelligence-enabled network has the ability to predict AF from a sinus rhythm single-lead ECG. Performance improves with a wider age distribution.
METHODS AND RESULTS: A convolutional neural network model was trained and evaluated using data from three AF screening studies. A total of 478 963 single-lead ECGs from 14 831 patients aged ≥65 years were included in the analysis. The training set included ECGs from 80% of participants in SAFER and STROKESTOP II. The remaining ECGs from 20% of participants in SAFER and STROKESTOP II together with all participants in STROKESTOP I were included in the test set. The accuracy was estimated using the area under the receiver operating characteristic curve (AUC). From a single timepoint ECG, the artificial intelligence-based algorithm predicted paroxysmal AF in the SAFER study with an AUC of 0.80 [confidence interval (CI) 0.78-0.83], which had a wide age range of 65-90+ years. Performance was lower in the age-homogenous groups in STROKESTOP I and STROKESTOP II (age range: 75-76 years), with AUCs of 0.62 (CI 0.61-0.64) and 0.62 (CI 0.58-0.65), respectively.
CONCLUSION: An artificial intelligence-enabled network has the ability to predict AF from a sinus rhythm single-lead ECG. Performance improves with a wider age distribution.
Full text links
Trending Papers
How to improve the efficiency and the safety of real-time ultrasound-guided central venous catheterization in 2023: a narrative review.Annals of Intensive Care 2023 May 26
SGLT2 Inhibitors: A New Therapeutical Strategy to Improve Clinical Outcomes in Patients with Chronic Kidney Diseases.International Journal of Molecular Sciences 2023 May 14
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app