Add like
Add dislike
Add to saved papers

Temperature Monitoring During Microwave Hyperthermia Based on BP-Nakagami Distribution.

OBJECTIVE: The purpose of this study is to accurately monitor temperature during microwave hyperthermia. We propose a temperature estimation model BP-Nakagami based on neural network for Nakagami distribution.

METHODS: In this work, we designed the microwave hyperthermia experiment of fresh ex vivo pork tissue and phantom, collected ultrasonic backscatter data at different temperatures, modeled these data using Nakagami distribution, and calculated Nakagami distribution parameter m. A neural network model was built to train the relationship between Nakagami distribution parameter m and temperature, and a BP-Nakagami temperature model with good fitting was obtained. The temperature model is used to draw the two-dimensional temperature distribution map of biological tissues in microwave hyperthermia. Finally, the temperature estimated by the model is compared with the temperature measured by thermocouples.

RESULTS: The error between the temperature estimated by the temperature model and the temperature measured by the thermocouple is within 1°C in the range of 25°C-50°C for ex vivo pork tissue, and the error between the temperature estimated by the temperature model and the temperature measured by the thermocouple is within 0.5°C in the range of 25°C-50°C for phantom.

CONCLUSIONS: The results show that the temperature estimation model proposed by us is an effective model for monitoring the internal temperature change of biological tissues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app