CT hyperdense cerebral artery sign reflects distinct proteomic composition in acute ischemic stroke thrombus.
Journal of Neurointerventional Surgery 2023 March 7
BACKGROUND: Hyperdense cerebral artery sign (HCAS) is an imaging biomarker in acute ischemic stroke (AIS) that has been shown to be associated with various clinical outcomes and stroke etiology. While prior studies have correlated HCAS with histopathological composition of cerebral thrombus, it is unknown whether and to what extent HCAS is also associated with distinct clot protein composition.
METHODS: Thromboembolic material from 24 patients with AIS were retrieved via mechanical thrombectomy and evaluated with mass spectrometry in order to characterize their proteomic composition. Presence (+) or absence (-) of HCAS on preintervention non-contrast head CT was then determined and correlated with thrombus protein signature with abundance of individual proteins calculated as a function HCAS status.
RESULTS: 24 clots with 1797 distinct proteins in total were identified. 14 patients were HCAS(+) and 10 were HCAS(-). HCAS(+) were most significantly differentially abundant in actin cytoskeletal protein (P=0.002, Z=2.82), bleomycin hydrolase (P=0.007, Z=2.44), arachidonate 12-lipoxygenase (P=0.004, Z=2.60), and lysophospholipase D (P=0.007, Z=2.44), among other proteins; HCAS(-) clots were differentially enriched in soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (P=0.0009, Z=3.11), tyrosine-protein kinase Fyn (P=0.002, Z=2.84), and several complement proteins (P<0.05, Z>1.71 for all), among numerous other proteins. Additionally, HCAS(-) thrombi were enriched in biological processes involved with plasma lipoprotein and protein-lipid remodeling/assembling, and lipoprotein metabolic processes (P<0.001), as well as cellular components including mitochondria (P<0.001).
CONCLUSIONS: HCAS is reflective of distinct proteomic composition in AIS thrombus. These findings suggest that imaging can be used to identify mechanisms of clot formation or maintenance at the protein level, and might inform future research on thrombus biology and imaging characterization.
METHODS: Thromboembolic material from 24 patients with AIS were retrieved via mechanical thrombectomy and evaluated with mass spectrometry in order to characterize their proteomic composition. Presence (+) or absence (-) of HCAS on preintervention non-contrast head CT was then determined and correlated with thrombus protein signature with abundance of individual proteins calculated as a function HCAS status.
RESULTS: 24 clots with 1797 distinct proteins in total were identified. 14 patients were HCAS(+) and 10 were HCAS(-). HCAS(+) were most significantly differentially abundant in actin cytoskeletal protein (P=0.002, Z=2.82), bleomycin hydrolase (P=0.007, Z=2.44), arachidonate 12-lipoxygenase (P=0.004, Z=2.60), and lysophospholipase D (P=0.007, Z=2.44), among other proteins; HCAS(-) clots were differentially enriched in soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (P=0.0009, Z=3.11), tyrosine-protein kinase Fyn (P=0.002, Z=2.84), and several complement proteins (P<0.05, Z>1.71 for all), among numerous other proteins. Additionally, HCAS(-) thrombi were enriched in biological processes involved with plasma lipoprotein and protein-lipid remodeling/assembling, and lipoprotein metabolic processes (P<0.001), as well as cellular components including mitochondria (P<0.001).
CONCLUSIONS: HCAS is reflective of distinct proteomic composition in AIS thrombus. These findings suggest that imaging can be used to identify mechanisms of clot formation or maintenance at the protein level, and might inform future research on thrombus biology and imaging characterization.
Full text links
Trending Papers
How to improve the efficiency and the safety of real-time ultrasound-guided central venous catheterization in 2023: a narrative review.Annals of Intensive Care 2023 May 26
SGLT2 Inhibitors: A New Therapeutical Strategy to Improve Clinical Outcomes in Patients with Chronic Kidney Diseases.International Journal of Molecular Sciences 2023 May 14
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app