Add like
Add dislike
Add to saved papers

Electromyographic biofeedback-driven gaming to alter calf muscle activation during gait in children with spastic cerebral palsy.

Gait & Posture 2023 Februrary 20
BACKGROUND: Children with cerebral palsy often show deviating calf muscle activation patterns during gait, with excess activation during early stance and insufficient activation during push-off.

RESEARCH QUESTION: Can children with cerebral palsy improve their calf muscle activation patterns during gait using one session of biofeedback-driven gaming?

METHODS: Eighteen children (6-17 y) with spastic cerebral palsy received implicit game-based biofeedback on electromyographic activity of the calf muscle (soleus or gastrocnemius medialis) while walking on a treadmill during one session. Biofeedback alternately aimed to reduce early stance activity, increase push-off activity, and both combined. Early stance and push-off activity and the double-bump-index (early stance divided by push-off activity) were determined during baseline and walking with feedback. Changes were assessed at group level using repeated measures ANOVA with simple contrast or Friedman test with post-hoc Wilcoxon signed rank test, as well as individually using independent t-tests or Wilcoxon rank sum tests. Perceived competence and interest-enjoyment were assessed through a questionnaire.

RESULTS: Children successfully decreased their electromyographic activity during early stance feedback trials (relative decrease of 6.8 ± 12.2 %, P = 0.025), with a trend during the combined feedback trials (6.5 ± 13.9 %, P = 0.055), and increased their electromyographic activity during push-off feedback trials (8.1 ± 15.8 %, P = 0.038). Individual improvements were seen in twelve of eighteen participants. All children experienced high levels of interest-enjoyment (8.4/10) and perceived competence (8.1/10).

SIGNIFICANCE: This exploratory study suggests that children with cerebral palsy can achieve small within-session improvements of their calf muscle activation pattern when provided with implicit biofeedback-driven gaming in an enjoyable manner. Follow-up gait training studies can incorporate this method to assess retention and long-term functional benefits of electromyographic biofeedback-driven gaming.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app