The effect of COVID-19 on self-reported safety incidents in aviation: An examination of the heterogeneous effects using causal machine learning.
Journal of Safety Research 2023 Februrary
INTRODUCTION: Disruptions to aviation operations occur daily on a micro-level with negligible impacts beyond the inconvenience of rebooking and changing aircrew schedules. The unprecedented disruption in global aviation due to COVID-19 highlighted a need to evaluate emergent safety issues rapidly.
METHOD: This paper uses causal machine learning to examine the heterogeneous effects of COVID-19 on reported aircraft incursions/excursions. The analysis utilized self report data from NASA Aviation Safety Reporting System collected from 2018 to 2020. The report attributes include self identified group characteristics and expert categorization of factors and outcomes. The analysis identified attributes and subgroup characteristics that were most sensitive to COVID-19 in inducing incursions/excursions. The method included the generalized random forest and difference-in-difference techniques to explore causal effects.
RESULTS: The analysis indicates first officers are more prone to experiencing incursion/excursion events during the pandemic. In addition, events categorized with the human factors confusion, distraction, and the causal factor fatigue increased incursion/excursion events.
PRACTICAL APPLICATIONS: Understanding the attributes associated with the likelihood of incursion/excursion events provides policymakers and aviation organizations insights to improve prevention mechanisms for future pandemics or extended periods of reduced aviation operations.
METHOD: This paper uses causal machine learning to examine the heterogeneous effects of COVID-19 on reported aircraft incursions/excursions. The analysis utilized self report data from NASA Aviation Safety Reporting System collected from 2018 to 2020. The report attributes include self identified group characteristics and expert categorization of factors and outcomes. The analysis identified attributes and subgroup characteristics that were most sensitive to COVID-19 in inducing incursions/excursions. The method included the generalized random forest and difference-in-difference techniques to explore causal effects.
RESULTS: The analysis indicates first officers are more prone to experiencing incursion/excursion events during the pandemic. In addition, events categorized with the human factors confusion, distraction, and the causal factor fatigue increased incursion/excursion events.
PRACTICAL APPLICATIONS: Understanding the attributes associated with the likelihood of incursion/excursion events provides policymakers and aviation organizations insights to improve prevention mechanisms for future pandemics or extended periods of reduced aviation operations.
Full text links
Trending Papers
Carvedilol, probably the β-blocker of choice for everyone with cirrhosis and portal hypertension: But not so fast!Liver International : Official Journal of the International Association for the Study of the Liver 2023 June
Evidence-Based Guideline for the diagnosis and management of eosinophilic granulomatosis with polyangiitis.Nature Reviews. Rheumatology 2023 May 10
Advances in Acute Ischemic Stroke Treatment: Current Status and Future Directions.AJNR. American Journal of Neuroradiology 2023 May 19
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app