Add like
Add dislike
Add to saved papers

The magnitude and time-course of physiological responses to 9 weeks of incremental ramp testing.

PURPOSE: The aims of this study were to assess (1) the day-to-day variability in, and (2) the magnitude and time-course of adaptation of physiological parameters (i.e., maximal oxygen uptake [VO2 max], heart rate [HR], blood lactate concentration, respiratory exchange ratio [RER], ratings of perceived exertion [RPE], and time-to-exhaustion [TTE]) in response to an intervention involving three incremental ramp tests per week for 9 weeks.

METHODS: Twelve participants (25 ± 4 yrs, VO2 max, 47.8 ± 5.2 mL∙min-1 ∙kg-1 (means ± SD)) completed the entire experimental procedure. The tests comprised a 5-min constant workload to obtain submaximal parameters followed by an incremental protocol until exhaustion.

RESULTS: The mean day-to-day variability for the maximal value of VO2 was 2.8%, 1.1% for HR, 18.1% for blood lactate concentration, 2.1% for RER, 1.1% for RPE, and 5.0% for TTE. The values for the corresponding submaximal variables were 3.8% for VO2 , 2.1% for HR, 15.6% for blood lactate concentration, 2.6% for RER and 6.0% for RPE. VO2 max (+4.7% ± 3.5%), TTE (+17.9% ± 8.6%), and submaximal HR (-3.2 ± 3.5%) improved significantly. Except for RPE (p < 0.01), there were no alterations in the coefficient of variation for any parameter. On the group level, the first changes greater than the day-to-day variability in VO2 max, TTE, and submaximal HR were observed after 21, 12, and 9 training sessions, respectively.

CONCLUSION: Based on our findings, we recommend that training studies include assessment of the reliability of the measurements, for example, the CVs in the specific laboratory to be able to judge if the changes detected are actually physiological.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app