Add like
Add dislike
Add to saved papers

Heterogeneous effects of S100 proteins during cell interactions between immune cells and stromal cells from synovium or skin.

Cell interactions represent an important mechanism involved in the pathogenesis of chronic inflammation. The key S100 proteins A8 and A9 have been studied in several models of chronic inflammatory diseases with highly heterogeneous conclusions. In this context, the aim of this study was to determine the role of cell interactions on S100 protein production and their effect on cytokine production during cell interactions, between immune and stromal cells from synovium or skin. Peripheral blood mononuclear cells (PBMC) were cultured alone or with synoviocytes or skin fibroblasts, with or without phytohemagglutinin, exogenous A8, A9, A8/A9 proteins or anti-A8/A9 antibody. Production of IL-6, IL-1β, IL-17, TNF, A8, A9 and A8/A9 was measured by ELISA. Cell interactions with synoviocytes had no effect on A8, A9 or A8/A9 secretion, while cell interactions with skin fibroblasts decreased A8 production. This highlights the importance of stromal cell origin. The addition of S100 proteins in co-cultures with synoviocytes did not increase the production of IL-6, IL-17 or IL-1β, except for an increase of IL-6 secretion with A8. The presence of anti-S100A8/A9 antibody did not show obvious effects. Low concentration or absence of serum in the culture medium decreased the production of IL-17, IL-6 and IL-1β but despite these conditions, the addition of S100 proteins did not increase cytokine secretion. In conclusion, the role of A8/A9 in cell interactions during chronic inflammation appears complex and heterogeneous, depending on multiple factors, notably the origin of stromal cells that can affect their secretion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app