A deep learning algorithm to quantify AVF stenosis and predict 6-month primary patency: a pilot study.
Clinical Kidney Journal 2023 March
BACKGROUND: A deep convolutional neural network (DCNN) model that predicts the degree of arteriovenous fistula (AVF) stenosis and 6-month primary patency (PP) based on AVF shunt sounds was developed, and was compared with various machine learning (ML) models trained on patients' clinical data.
METHODS: Forty dysfunctional AVF patients were recruited prospectively, and AVF shunt sounds were recorded before and after percutaneous transluminal angioplasty using a wireless stethoscope. The audio files were converted to melspectrograms to predict the degree of AVF stenosis and 6-month PP. The diagnostic performance of the melspectrogram-based DCNN model (ResNet50) was compared with that of other ML models [i.e. logistic regression (LR), decision tree (DT) and support vector machine (SVM)], as well as the DCNN model (ResNet50) trained on patients' clinical data.
RESULTS: Melspectrograms qualitatively reflected the degree of AVF stenosis by exhibiting a greater amplitude at mid-to-high frequency in the systolic phase with a more severe degree of stenosis, corresponding to a high-pitched bruit. The proposed melspectrogram-based DCNN model successfully predicted the degree of AVF stenosis. In predicting the 6-month PP, the area under the receiver operating characteristic curve of the melspectrogram-based DCNN model (ResNet50) (≥0.870) outperformed that of various ML models based on clinical data (LR, 0.783; DT, 0.766; SVM, 0.733) and that of the spiral-matrix DCNN model (0.828).
CONCLUSION: The proposed melspectrogram-based DCNN model successfully predicted the degree of AVF stenosis and outperformed ML-based clinical models in predicting 6-month PP.
METHODS: Forty dysfunctional AVF patients were recruited prospectively, and AVF shunt sounds were recorded before and after percutaneous transluminal angioplasty using a wireless stethoscope. The audio files were converted to melspectrograms to predict the degree of AVF stenosis and 6-month PP. The diagnostic performance of the melspectrogram-based DCNN model (ResNet50) was compared with that of other ML models [i.e. logistic regression (LR), decision tree (DT) and support vector machine (SVM)], as well as the DCNN model (ResNet50) trained on patients' clinical data.
RESULTS: Melspectrograms qualitatively reflected the degree of AVF stenosis by exhibiting a greater amplitude at mid-to-high frequency in the systolic phase with a more severe degree of stenosis, corresponding to a high-pitched bruit. The proposed melspectrogram-based DCNN model successfully predicted the degree of AVF stenosis. In predicting the 6-month PP, the area under the receiver operating characteristic curve of the melspectrogram-based DCNN model (ResNet50) (≥0.870) outperformed that of various ML models based on clinical data (LR, 0.783; DT, 0.766; SVM, 0.733) and that of the spiral-matrix DCNN model (0.828).
CONCLUSION: The proposed melspectrogram-based DCNN model successfully predicted the degree of AVF stenosis and outperformed ML-based clinical models in predicting 6-month PP.
Full text links
Trending Papers
The future of intensive care: the study of the microcirculation will help to guide our therapies.Critical Care : the Official Journal of the Critical Care Forum 2023 May 17
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app