JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Artificial Intelligence for Diabetic Retinopathy Screening Using Color Retinal Photographs: From Development to Deployment.

Diabetic retinopathy (DR), a leading cause of preventable blindness, is expected to remain a growing health burden worldwide. Screening to detect early sight-threatening lesions of DR can reduce the burden of vision loss; nevertheless, the process requires intensive manual labor and extensive resources to accommodate the increasing number of patients with diabetes. Artificial intelligence (AI) has been shown to be an effective tool which can potentially lower the burden of screening DR and vision loss. In this article, we review the use of AI for DR screening on color retinal photographs in different phases of application, ranging from development to deployment. Early studies of machine learning (ML)-based algorithms using feature extraction to detect DR achieved a high sensitivity but relatively lower specificity. Robust sensitivity and specificity were achieved with the application of deep learning (DL), although ML is still used in some tasks. Public datasets were utilized in retrospective validations of the developmental phases in most algorithms, which require a large number of photographs. Large prospective clinical validation studies led to the approval of DL for autonomous screening of DR although the semi-autonomous approach may be preferable in some real-world settings. There have been few reports on real-world implementations of DL for DR screening. It is possible that AI may improve some real-world indicators for eye care in DR, such as increased screening uptake and referral adherence, but this has not been proven. The challenges in deployment may include workflow issues, such as mydriasis to lower ungradable cases; technical issues, such as integration into electronic health record systems and integration into existing camera systems; ethical issues, such as data privacy and security; acceptance of personnel and patients; and health-economic issues, such as the need to conduct health economic evaluations of using AI in the context of the country. The deployment of AI for DR screening should follow the governance model for AI in healthcare which outlines four main components: fairness, transparency, trustworthiness, and accountability.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app