Catabolism highly influences ICU-acquired hypernatremia in a mainly trauma and surgical cohort.
Journal of Critical Care 2023 Februrary 28
PURPOSE: To further analyse causes and effects of ICU-acquired hypernatremia.
METHODS: This retrospective, single-centre study, analysed 994 patients regarding ICU-acquired hypernatremia. Non-hypernatremic patients (n = 617) were compared to early-hypernatremic (only before ICU-day 4; n = 87), prolonged-hypernatremic (before and after ICU-day 4; n = 169) and late-hypernatremic patients (only after ICU-day 4; n = 121). Trends in glomerular filtration rate (eGFR), urea-to-creatinine ratio (UCR), fraction of urea in total urine osmolality and urine sodium were compared. Risk factors for i) the development of hypernatremia and ii) mortality were determined.
RESULTS: Thirty-eight percent (n = 377) developed ICU-acquired hypernatremia. Specifically in the prolonged- and late-group, decreased eGFRs and urine sodium but increased UCR and fractions of urea in urine osmolality were present. Decreased eGFR was a risk factor for the development of hypernatremia in all groups; disease severity and increased catabolism particularly in the prolonged- and late-hypernatremic group. Increased age, SAPS-III and signs of catabolism but not the development of hypernatremia itself was identified as significant risk factor for mortality.
CONCLUSIONS: Late- and prolonged-hypernatremia is highly related to an increased protein metabolism. Besides excessive catabolism, initial disease severity and a decrease in renal function must be considered when confronted with ICU-acquired hypernatremia.
METHODS: This retrospective, single-centre study, analysed 994 patients regarding ICU-acquired hypernatremia. Non-hypernatremic patients (n = 617) were compared to early-hypernatremic (only before ICU-day 4; n = 87), prolonged-hypernatremic (before and after ICU-day 4; n = 169) and late-hypernatremic patients (only after ICU-day 4; n = 121). Trends in glomerular filtration rate (eGFR), urea-to-creatinine ratio (UCR), fraction of urea in total urine osmolality and urine sodium were compared. Risk factors for i) the development of hypernatremia and ii) mortality were determined.
RESULTS: Thirty-eight percent (n = 377) developed ICU-acquired hypernatremia. Specifically in the prolonged- and late-group, decreased eGFRs and urine sodium but increased UCR and fractions of urea in urine osmolality were present. Decreased eGFR was a risk factor for the development of hypernatremia in all groups; disease severity and increased catabolism particularly in the prolonged- and late-hypernatremic group. Increased age, SAPS-III and signs of catabolism but not the development of hypernatremia itself was identified as significant risk factor for mortality.
CONCLUSIONS: Late- and prolonged-hypernatremia is highly related to an increased protein metabolism. Besides excessive catabolism, initial disease severity and a decrease in renal function must be considered when confronted with ICU-acquired hypernatremia.
Full text links
Trending Papers
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app