Add like
Add dislike
Add to saved papers

Effects of CX3CR1 and CXCR2 antagonists on running-dependent intramuscular neutrophil recruitments and myokine upregulation.

Muscle contractile activity stimulates intramuscular recruitment of immune cells including neutrophils emerging to serve as a prerequisite for exerting proper muscular performance, although the underlying mechanisms and their contributions to myokine upregulation remain ill-defined. We previously reported that pharmacological inhibition of CX3CR1, a fractalkine receptor, dampens gnawing-dependent neutrophil recruitment into masseter muscles along with compromising their masticatory activity. By employing a running exercise model, we herein demonstrated that hindlimb muscles require collaborative actions of both CX3CR1- and CXCR2-mediated signals for achieving neutrophil recruitment, upregulation of myokines including interleukin (IL)-6, enhanced GLUT4 translocation, and adequate endurance capability. Mechanistically, we revealed that a combination of CX3CR1 and CXCR2 antagonists, i.e., AZD8797 and SB2205002, inhibits exercise-inducible ICAM-1 and fractalkine upregulations in the area of the endothelium and muscle-derived CXCL1 upregulation, both of which apparently contribute to the intramuscular neutrophil accumulation in working muscles. Intriguingly, we also observed that 2 h of running results in intramuscular augmentation of innate lymphoid type 2 cells (ILC2s) markers, i.e., Bcl11b mRNA levels and anti-GATA-3-antibody-positive signals, and that these effects are completely abolished by administration of the combination of CX3CR1 and CXCR2 antagonists. Taken together, our findings strongly suggest that the exercise-evoked regional interplay among working myofibers, the adjacent endothelium and recruited immune cells including neutrophils and possibly ILC2s, mediated through these local factors, plays a key role in organization of the intramuscular microenvironment supporting the performance of hindlimb muscles during running.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app