Intraoperative shear-wave elastography and superb microvascular imaging contribute to the glioma grading.
Journal of Clinical Neuroscience : Official Journal of the Neurosurgical Society of Australasia 2023 Februrary 26
BACKGROUND: To explore the diagnostic value and feasibility of shear wave elastography and superb microvascular imaging in the grading diagnosis of glioma intraoperatively.
MATERIALS AND METHODS: Forty-nine patients with glioma were included in this study. B-mode ultrasonography, Young's modulus in shear-wave elastography (SWE) and vascular architecture in superb microvascular imaging(SMI) of tumor tissue and peritumoral tissue were analyzed. Receiver operating characteristic(ROC) curve analysis was used to evaluate the diagnostic effect of SWE. Logistic regression model was used to calculate the prediction probability of HGG diagnosis.
RESULTS: Compared with LGG, HGG was often characterized by peritumoral edema in B mode (P < 0.05). There was a significant difference in Young's modulus between HGG and LGG; the diagnostic threshold of HGG and LGG was 13.05 kPa, the sensitivity was 78.3%, and the specificity was 76.9%. The vascular architectures of the tumor tissue and peritumoral tissues of HGG and LGG were significantly different (P < 0.05). The vascular architectures of peritumoral tissue in HGG often characterized by distorted blood flow signals surrounding the tumor (14/26,53.8%); in the tumor tissue, HGG often presents as dilated and bent vessels(19/26,73.1%). The elasticity value of SWE and the tumor vascular architectures of SMI were correlated with the diagnosis of HGG.
CONCLUSION: Intraoperative ultrasound (ioUS), especially SWE, and SMI are beneficial for the differentiation of HGG and LGG and may help optimize clinical surgical procedures.
MATERIALS AND METHODS: Forty-nine patients with glioma were included in this study. B-mode ultrasonography, Young's modulus in shear-wave elastography (SWE) and vascular architecture in superb microvascular imaging(SMI) of tumor tissue and peritumoral tissue were analyzed. Receiver operating characteristic(ROC) curve analysis was used to evaluate the diagnostic effect of SWE. Logistic regression model was used to calculate the prediction probability of HGG diagnosis.
RESULTS: Compared with LGG, HGG was often characterized by peritumoral edema in B mode (P < 0.05). There was a significant difference in Young's modulus between HGG and LGG; the diagnostic threshold of HGG and LGG was 13.05 kPa, the sensitivity was 78.3%, and the specificity was 76.9%. The vascular architectures of the tumor tissue and peritumoral tissues of HGG and LGG were significantly different (P < 0.05). The vascular architectures of peritumoral tissue in HGG often characterized by distorted blood flow signals surrounding the tumor (14/26,53.8%); in the tumor tissue, HGG often presents as dilated and bent vessels(19/26,73.1%). The elasticity value of SWE and the tumor vascular architectures of SMI were correlated with the diagnosis of HGG.
CONCLUSION: Intraoperative ultrasound (ioUS), especially SWE, and SMI are beneficial for the differentiation of HGG and LGG and may help optimize clinical surgical procedures.
Full text links
Trending Papers
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app