Add like
Add dislike
Add to saved papers

Squalene epoxidase facilitates cervical cancer progression by modulating tumor protein p53 signaling pathway.

BACKGROUND: The mortality of cervical cancer (CC) is quite high and advanced CC is hard to cure. Accordingly, to find the mechanism of CC progression at molecular level is imminent.

METHODS: The mRNA expression data were acquired from The Cancer Genome Atlas database, and squalene epoxidase (SQLE) level in the tumor and adjuvant tissues of CC was analyzed. The pathway enrichment analysis of target mRNAs was performed based on the GSEA database. The cancerous tissues and para-cancerous tissues of CC patients were collected for immunohistochemistry. SQLE and p53 mRNA expression was ensured by qRT-polymerase chain reaction. SQLE and p53 protein levels were determined by western blot. Cell functional assays focused on evaluating the malignant behaviors of cancer cells in each treatment group. Nude mouse xenograft models were constructed for tumorigenicity analysis.

RESULTS: Bioinformatics analysis revealed that SQLE expression was high in CC tissues, which was linked to the poor prognosis. SQLE could affect the p53 signaling pathway. Cell functional assays demonstrated that SQLE expression was promoted in CC cell lines, and overexpressing SQLE facilitated the malignant phenotypes of CC cells, whereas silencing SQLE suppressed CC progression in vitro and in vivo. Besides, the repressed p53 signaling pathway could reverse the effect caused by silenced SQLE.

CONCLUSION: SQLE could promote CC progression by modulating the p53 signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app