Add like
Add dislike
Add to saved papers

In Situ -Formed Fibrin Hydrogel Scaffold Loaded With Human Umbilical Cord Mesenchymal Stem Cells Promotes Skin Wound Healing.

Healing of full-thickness skin wounds remains a major challenge. Recently, human umbilical cord mesenchymal stem cells (hUC-MSCs) were shown to possess an extraordinary potential to promote skin repair in clinical settings. However, their low survival rate after transplantation limits their therapeutic efficiency in treating full-thickness skin wounds. Hydrogels are considered an ideal cell transplantation vector owing to their three-dimensional mesh structure, good biosafety, and biodegradation. The objective of this study was to investigate the skin wound healing effect of a fibrin hydrogel scaffold loaded with hUC-MSCs. We found that the fibrin hydrogel had a three-dimensional mesh structure and low cytotoxicity and could prolong the time of cell survival in the peri-wound area. The number of green fluorescent protein (GFP)-labeled hUC-MSCs was higher in the full-thickness skin wound of mice treated with hydrogel-hUC-MSCs than those of mice treated with cell monotherapy. In addition, the combination therapy between the hydrogel and hUC-MSCs speed up wound closure, its wound healing rate was significantly higher than those of phosphate-buffered saline (PBS) therapy, hydrogel monotherapy, and hUC-MSCs monotherapy. Furthermore, the results showed that the combination therapy between hydrogel and hUC-MSCs increased keratin 10 and keratin 14 immunofluorescence staining, and upregulated the relative gene expressions of epidermal growth factor (EGF), transforming growth factor-β1 (TGF-β1), and vascular endothelial growth factor A (VEGFA), promoting epithelial regeneration and angiogenesis. In conclusion, the fibrin hydrogel scaffold provides a relatively stable sterile environment for cell adhesion, proliferation, and migration, and prolongs cell survival at the wound site. The hydrogel-hUC-MSCs combination therapy promotes wound closure, re-epithelialization, and neovascularization. It exhibits a remarkable therapeutic effect, being more effective than the monotherapy with hUC-MSCs or hydrogel.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app