Add like
Add dislike
Add to saved papers

Multiresidue analysis of pesticides in three Indian soils: method development and validation using gas chromatography tandem mass spectrometry.

The paper reports a multiresidue method that was validated on 220 multi-class pesticides in three major Indian soils, namely, (i) new alluvial soil (NAS); (ii) red lateritic soil (RS) and (iii) black soil (BS) from three different regions. An ethyl acetate-based extraction method with a freezing-out cleanup step was employed for sample preparation, followed by gas chromatography-tandem mass spectrometric analysis. The method that was initially optimized on BS worked satisfactorily for the other two soil matrices. At the spiking level of 10 µg/kg (LOQ), the recoveries were satisfactory (within 70-120%) with precision-RSDs, ≤20% ( n  = 6) for 85, 88.6, and 89% of compounds in BS, RS, and NAS respectively. At 20 µg/kg, the method performance was satisfactory in each soil for all pesticides. When this validated method was applied to analyse 25 field samples, 6 pesticides were detected in them. In each case, precision (RSD) was <20%. The method sensitivity, accuracy and precision complied with the SANTE/2020/12830 guidelines. The method can be applied for environmental monitoring and risk assessment purposes, thus aiding in regulating pesticide usage in agricultural fields. The limitations and future scope of the study are also discussed.HighlightsA multiresidue method is reported for simultaneous analysis of multi-class pesticides in diverse soilsThe method was validated on 220 pesticides in new alluvial, red lateritic and black soilsSample preparation involved extraction with ethyl acetate and cleanup by a freezing stepThe residues were estimated by gas chromatography tandem mass spectrometry (GC-MS/MS)The method accuracy and precision complied with the EU's SANTE guidelines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app