Add like
Add dislike
Add to saved papers

Machine learning-based model for predicting the esophagogastric variceal bleeding risk in liver cirrhosis patients.

Diagnostic Pathology 2023 Februrary 24
BACKGROUND: Liver cirrhosis patients are at risk for esophagogastric variceal bleeding (EGVB). Herein, we aimed to estimate the EGVB risk in patients with liver cirrhosis using an artificial neural network (ANN).

METHODS: We included 999 liver cirrhosis patients hospitalized at the Beijing Ditan Hospital, Capital Medical University in the training cohort and 101 patients from Shuguang Hospital in the validation cohort. The factors independently affecting EGVB occurrence were determined via univariate analysis and used to develop an ANN model.

RESULTS: The 1-year cumulative EGVB incidence rates were 11.9 and 11.9% in the training and validation groups, respectively. A total of 12 independent risk factors, including gender, drinking and smoking history, decompensation, ascites, location and size of varices, alanine aminotransferase (ALT), γ-glutamyl transferase (GGT), hematocrit (HCT) and neutrophil-lymphocyte ratio (NLR) levels as well as red blood cell (RBC) count were evaluated and used to establish the ANN model, which estimated the 1-year EGVB risk. The ANN model had an area under the curve (AUC) of 0.959, which was significantly higher than the AUC for the North Italian Endoscopic Club (NIEC) (0.669) and revised North Italian Endoscopic Club (Rev-NIEC) indices (0.725) (all P <  0.001). Decision curve analyses revealed improved net benefits of the ANN compared to the NIEC and Rev-NIEC indices.

CONCLUSIONS: The ANN model accurately predicted the 1-year risk for EGVB in liver cirrhosis patients and might be used as a basis for risk-based EGVB surveillance strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app