Add like
Add dislike
Add to saved papers

Comparative transcriptome of dorsal root ganglia reveals distinct etiologies of paclitaxel- and oxaliplatin-induced peripheral neuropathy in rats.

Neuroscience 2023 Februrary 22
Chemotherapy-induced peripheral neuropathy is one of the most common side effects of anticancer therapy. It is anticipated that chemotherapies with different mechanisms of action may affect somatosensory neurons differently. This study aimed to explore similar and differential etiologies of oxaliplatin- and paclitaxel-induced neuropathy by comparing the transcriptomes of dorsal root ganglia (DRGs). We retrieved our previously published transcriptome data of DRGs extracted from vehicle-, oxaliplatin- and paclitaxel-treated rats (GSE160543), to analyze in parallel the differentially expressed genes (DEGs) and Gene ontology (GO) terms enrichment. We found that both oxaliplatin and paclitaxel treatments consistently produced mechanical allodynia, thermal hyperalgesia, and cold hyperalgesia in rats. Compared to vehicle, 320 and 150 DEGs were identified after oxaliplatin and paclitaxel treatment, respectively. Only 17 DEGs were commonly dysregulated by the two reagents. Activating transcription factor 3 (Atf3), a marker of nerve injury, was elevated only after paclitaxel treatment. GO analysis suggested that paclitaxel treatment was associated with neuronal changes characterized by numerous terms that are related to synaptic transmission, while oxaliplatin was more likely to affect dividing cells (e.g., the glia) and neuroinflammation. Notably, 29 biological processes GO terms were commonly enriched in response to both drugs. However, 28 out of 29 terms were oppositely modulated. This study suggests that distinct mechanisms underly paclitaxel- and oxaliplatin-induced neuropathy. Paclitaxel might directly affect somatosensory neurons while oxaliplatin primarily targets dividing cells and immune cells.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app