JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Exosomal miR-146b-5p derived from cancer-associated fibroblasts promotes progression of oral squamous cell carcinoma by downregulating HIPK3.

OBJECTIVES: Cancer-associated fibroblasts (CAFs) are vital constituents of the tumor microenvironment (TME) and play a predominant role in oral squamous cell carcinoma (OSCC) progression. We aimed to investigate the effect and mechanism of exosomal miR-146b-5p derived from CAFs on the malignant biological behavior of OSCC.

MATERIALS AND METHODS: Illumina small RNA (sRNA) sequencing was conducted to determine the differential expression patterns of microRNAs (miRNAs) in exosomes derived from CAFs and normal fibroblasts (NFs). Transwell and cell counting kit-8 (CCK-8) assays and xenograft tumor models in nude mice were used to investigate the effect of CAF exosomes and miR-146b-p on the malignant biological behavior of OSCC. Reverse transcription quantitative real-time PCR (qRT-PCR), luciferase reporter, western blotting (WB) and immunohistochemistry assays were employed to investigate the underlying mechanisms involved in CAF exosomes that promote OSCC progression.

RESULTS: We demonstrated that CAF-derived exosomes were taken up by OSCC cells and enhanced the proliferation, migration, and invasion ability of OSCC. Compared with NFs, the expression of miR-146b-5p was increased in exosomes and their parent CAFs. Further studies showed that the decreased expression of miR-146b-5p inhibited the proliferation, migration and invasion ability of OSCC cells in vitro and the growth of OSCC cells in vivo. Mechanistically, miR-146b-5p overexpression led to the suppression of HIKP3 by directly targeting the 3'-UTR of HIPK3, as confirmed by luciferase assay. Reciprocally, HIPK3 knockdown partially reversed the inhibitory effect of the miR-146b-5p inhibitor on the proliferation, migration, and invasion ability of OSCC cells and restored their malignant phenotype.

CONCLUSIONS: Our results revealed that CAF-derived exosomes contained higher levels of miR-146b-5p than NFs, and miR-146b-5p overexpression in exosomes promoted the malignant phenotype of OSCC by targeting HIPK3. Therefore, inhibiting exosomal miR-146b-5p secretion may be a promising therapeutic modality for OSCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app