Add like
Add dislike
Add to saved papers

Novel read through agent: ZKN-0013 demonstrates efficacy in APC min model of familial adenomatous polyposis.

Familial adenomatous polyposis (FAP) is a precancerous, colorectal disease characterized by hundreds to thousands of adenomatous polyps caused by mutations in the tumor suppressor gene adenomatous polyposis coli (APC). Approximately 30% of these mutations are premature termination codons (PTC), resulting in the production of a truncated, dysfunctional APC protein. Consequently, the β-catenin degradation complex fails to form in the cytoplasm, leading to elevated nuclear levels of β-catenin and unregulated β-catenin/wnt-pathway signaling. We present in vitro and in vivo data demonstrating that the novel macrolide, ZKN-0013, promotes read through of premature stop codons, leading to functional restoration of full-length APC protein. Human colorectal carcinoma SW403 and SW1417 cells harboring PTC mutations in the APC gene showed reduced levels of nuclear β-catenin and c-myc upon treatment with ZKN-0013, indicating that the macrolide-mediated read through of premature stop codons produced bioactive APC protein and inhibited the β-catenin/wnt-pathway. In a mouse model of adenomatous polyposis coli, treatment of APCmin mice with ZKN-0013 caused a significant decrease in intestinal polyps, adenomas, and associated anemia, resulting in increased survival. Immunohistochemistry revealed decreased nuclear β-catenin staining in the epithelial cells of the polyps in ZKN-0013-treated APCmin mice, confirming the impact on the β-catenin/wnt-pathway. These results indicate that ZKN-0013 may have therapeutic potential for the treatment of FAP caused by nonsense mutations in the APC gene. KEY MESSAGES: • ZKN-0013 inhibited the growth of human colon carcinoma cells with APC nonsense mutations. • ZKN-0013 promoted read through of premature stop codons in the APC gene. • In APCmin mice, ZKN-0013 treatment reduced intestinal polyps and their progression to adenomas. • ZKN-0013 treatment in APCmin mice resulted in reduced anemia and increased survival.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app