Add like
Add dislike
Add to saved papers

Compound heterozygous splicing variants expand the genotypic spectrum of EMC1-related disorders.

Clinical Genetics 2023 Februrary 18
EMC1 encodes subunit 1 of the endoplasmic reticulum (ER) membrane protein complex (EMC), a transmembrane domain insertase involved in membrane protein biosynthesis. Variants in EMC1 are described as a cause of global developmental delay, hypotonia, cortical visual impairment, and commonly, cerebral atrophy on MRI scan. We report an individual with severe global developmental delay and progressive cerebellar atrophy in whom exome sequencing identified a heterozygous essential splice-site variant in intron-3 of EMC1 (NM_015047.3:c.287-1G>A). Whole genome sequencing (WGS) identified a deep intronic variant in intron-20 of EMC1 (NM_015047.3:c.2588-771C>G) that was poorly predicted by in silico programs to disrupt pre-mRNA splicing. RT-PCR revealed stochastic activation of a pseudo-exon associated with the c.2588-771C>G variant and mis-splicing arising from the c.287-1G>A variant. This case highlights the utility of WGS and RNA studies to identify and assess likely pathogenicity of deep intronic variants and expands the genotypic and phenotypic spectrum of EMC1-related disorders. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app