Add like
Add dislike
Add to saved papers

Transcellular Transport Behavior of the Intact Polymeric Mixed Micelles with Different Polymeric Ratios.

AAPS PharmSciTech 2023 Februrary 16
In order to better promote the application of the polymeric mixed micelles (PMMs) in oral delivery, in addition to focusing on the improvement of micellar structural stability, it is necessary to obtain the absorption characteristics of the intact micellar particles. In this work, the transport behavior across Caco-2 cells of FS/PMMs composed of Pluronic F127 and Solutol HS15 was tracked by encapsulating an environment-responsive probe into the particles. The specific property of the probe is the water-initiated aggregation-caused quenching (ACQ) ability, by which integral particles can be identified accurately. The influence of polymeric ratios (FS) on the transcellular behavior of FS/PMMs was explored and the single pass intestinal perfusion experiment was used to further illustrate it. Moreover, pharmacokinetics parameters were detected to analyze the relationship among FS ratios, transport behavior, and pharmacokinetic parameters. FS ratios were found to hardly affect the endocytosis pathways and intracellular itinerary of FS/PMMs, but do affect the proportion of each path. FS/PMMs with high HS15 content, namely System-I, were found to primarily undergo receptor-mediated endocytosis pathway and be less susceptible to lysosomal degradation, which would lead to more absorption and higher Cmax and AUC than drug suspension. In contrast, despite System-II with high F127 content cannot contribute to drug plasma concentration, it can prolong the in vivo retention time. These findings provided evidence for the role of polymeric ratios in modulating the transcellular absorption and pharmacokinetic parameters of the drug-loaded PMMs, and would be a step forward in helping PMMs' design to enhance oral drug delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app