Add like
Add dislike
Add to saved papers

Mycosynthesis of AgNPs: mechanisms of nanoparticle formation and antimicrobial activities.

INTRODUCTION: The inactivation and eradication of multidrug-resistant bacteria, fungi, and viruses by conventional antibiotics and drugs have not been effective. The hindering of these pathogens in hospital-acquired infections caused by Gram-positive bacteria, particularly strains of S. aureus including community-acquired methicillin-resistant (CA-MRSA) and hospital-acquired MRSA (HA-MRSA), is more complicated, specifically in patients having immunodeficiency syndrome.

RESEARCH AREA: Bare and functionalized metal and metal oxide nanoparticles (NPs) specifically silver (Ag) NPs have shown significant antibacterial, antifungal, and antiviral. Biosynthesis of AgNPs by fungal species in media of cell-free filtrate and culture supernatant can provide new therapeutic properties compared to physical and chemical methods.

EXPERT OPINION: Various primary and secondary metabolites of fungi such as phytochelatin, trichodin, primin, altersolanol A, periconicin A, brefeldin A, graphislactone A, phomol, polysaccharides (chitin, glucans, and galactomannans), and enzymes can contribute to reducing Ag+ ions and stabilizing NPs in one-pot method. These natural compounds can augment antimicrobial activity by bypassing multidrug-resistance barriers in viruses, bacteria, and fungi. Controlling physicochemical properties and effective therapeutic concentration of fungal AgNPs can be the determinative parameters for the antimicrobial strength of AgNPs. Therefore, in this review, we have tried to address the antimicrobial mechanisms and physicochemical properties of fungal synthesized AgNPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app