Add like
Add dislike
Add to saved papers

Next-generation sequencing approach to investigate genome variability of Parapoxvirus in Canadian muskoxen (Ovibos moschatus).

In 2016, an the first orf virus, a double-stranded DNA (dsDNA) virus of the genus parapoxvirus, from a muskox was isolated on Victoria Island, Nunavut (NU), Canada. We used deep sequencing on DNA extracted from orf virus-positive tissues from wild muskoxen from locations on Victoria Island and the adjacent mainland. Orf virus sequence reads derived from four samples were nearly identical. The consensus sequences generated from pooled reads of MxOV comprises of a large contiguous sequence (contig) of 131,759 bp and a smaller right terminal contig of 3552 bp, containing all coding sequences identified as Parapoxvirus. Individual gene comparisons reveal that MxOV shares genetic characteristics with reference strains from both sheep and goat origin. Recombination analysis using Bootscan, MAXCHI, GENECONV, CHIMAERA, SISCAN, and RDP algorithms within the RDP4 software predicted recombination events in two virulence factors, and a large 3000 bp segment of the MxOV genome. Partial B2L nucleotide sequences from strains around the world and other North American isolates were compared to MxOV using MUSCLE alignments and RAxML phylogenetic trees. MxOV was identical to our previously characterized isolate, and shared similarity with orf virus isolated from sheep and goats. The phylogenetic grouping of partial B2L nucleotide sequences did not follow the sample geographic distribution. More full genomes of orf virus, or at least full B2L gene squences, in wildlife are needed especially in North America to better understand the epidemiology of the disease in muskoxen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app