Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Artificial intelligence in multi-objective drug design.

The factors determining a drug's success are manifold, making de novo drug design an inherently multi-objective optimisation (MOO) problem. With the advent of machine learning and optimisation methods, the field of multi-objective compound design has seen a rapid increase in developments and applications. Population-based metaheuris-tics and deep reinforcement learning are the most commonly used artificial intelligence methods in the field, but recently conditional learning methods are gaining popularity. The former approaches are coupled with a MOO strat-egy which is most commonly an aggregation function, but Pareto-based strategies are widespread too. Besides these and conditional learning, various innovative approaches to tackle MOO in drug design have been proposed. Here we provide a brief overview of the field and the latest innovations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app