Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The subcortical correlates of autistic traits in school-age children: a population-based neuroimaging study.

Molecular Autism 2023 Februrary 12
BACKGROUND: There is emerging evidence that the neuroanatomy of autism forms a spectrum which extends into the general population. However, whilst several studies have identified cortical morphology correlates of autistic traits, it is not established whether morphological differences are present in the subcortical structures of the brain. Additionally, it is not clear to what extent previously reported structural associations may be confounded by co-occurring psychopathology. To address these questions, we utilised neuroimaging data from the Adolescent Brain Cognitive Development Study to assess whether a measure of autistic traits was associated with differences in child subcortical morphology, and if any observed differences persisted after adjustment for child internalising and externalising symptoms.

METHODS: Our analyses included data from 7005 children aged 9-10 years (female: 47.19%) participating in the Adolescent Brain Cognitive Development Study. Autistic traits were assessed using scores from the Social Responsiveness Scale (SRS). Volumes of subcortical regions of interest were derived from structural magnetic resonance imaging data.

RESULTS: Overall, we did not find strong evidence for an association of autistic traits with differences in subcortical morphology in this sample of school-aged children. Whilst lower absolute volumes of the nucleus accumbens and putamen were associated with higher scores of autistic traits, these differences did not persist once a global measure of brain size was accounted for.

LIMITATIONS: It is important to note that autistic traits were assessed using the SRS, of which higher scores are associated with general behavioural problems, and therefore may not be wholly indicative of autism-specific symptoms. In addition, individuals with a moderate or severe autism diagnosis were excluded from the ABCD study, and thus, the average level of autistic traits will be lower than in the general population which may bias findings towards the null.

CONCLUSIONS: These findings from our well-powered study suggest that other metrics of brain morphology, such as cortical morphology or shape-based phenotypes, may be stronger candidates to prioritise when attempting to identify robust neuromarkers of autistic traits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app