Add like
Add dislike
Add to saved papers

Deep learning-extracted CT imaging phenotypes predict response to total resection in colorectal cancer.

Acta Radiologica 2023 Februrary 11
BACKGROUND: Deep learning surpasses many traditional methods for many vision tasks, allowing the transformation of hierarchical features into more abstract, high-level features.

PURPOSE: To evaluate the prognostic value of preoperative computed tomography (CT) image texture features and deep learning self-learning high-throughput features (SHF) on postoperative overall survival in the treatment of patients with colorectal cancer (CRC).

MATERIAL AND METHODS: The dataset consisted of 810 enrolled patients with CRC confirmed from 10 November 2011 to 10 February 2018. In contrast, SHF extracted by deep learning with multi-task training mechanism and texture features were extracted from the CT with tumor volume region of interest, respectively, and combined with the Cox proportional hazard (CoxPH) model for initial validation to obtain a RAD score to classify patients into high- and low-risk groups. The SHF stability was further validated in combination with Neural Multi-Task Logistic Regression (N-MTLR) model. The overall recognition ability and accuracy of CoxPH and N-MTLR model were evaluated by C-index and Integrated Brier Score (IBS).

RESULTS: SHF had a more significant degree of differentiation than texture features. The result is (SHF vs. texture features: C-index: 0.884 vs. 0.611; IBS: 0.025 vs. 0.073) in the CoxPH model, and (SHF vs. texture features: C-index: 0.861 vs. 0.630; IBS: 0.024 vs. 0.065) in N-MTLR.

CONCLUSION: SHF is superior to texture features and has potential application for the preoperative prediction of the individualized treatment of CRC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app