Add like
Add dislike
Add to saved papers

Protocol for a high titer of BaEV-Rless pseudotyped lentiviral vector: focus on syncytium formation and detachment.

The development of hematopoietic stem cell (HSCs) gene therapy for DNA repair disorders, such as Fanconi anemia and Bloom syndrome, is challenging because of the induction of HSCs apoptosis by cytokine stimulation. Although the Baboon envelope pseudotyped lentiviral vector (BaEV-Rless-LV) has been reported as a non-stimulatory gene transfer tool, the virus titer of BaEV-Rless-LV is too low for use in clinical applications. Transfected 293T cells with helper plasmids, including the BaEV-Rless plasmid, showed morphological changes, such as syncytium formation and detachment. To establish a novel protocol for producing a high titer of BaEV-Rless-LV, we optimized three aspects of a basic virus production protocol by focusing on modifying culture conditions and the use of reagents: the virus titer increased 3-fold when the amount of BaEV-Rless plasmid was increased 1.2-fold; the highest titer was obtained when the viral supernatant was harvested at 48-h post-transfection, despite complete syncytium formation and detachment of the 293T cells; and the use of poly-L-lysine-coated culture plates to enhance the adhesion and proliferation of 293T cells and prevent detachment doubled the titer. Collectively, our novel protocol resulted in a 10-fold titer increase compared to the basic protocol and may be useful in clinical applications for treating DNA repair disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app